Study	Events T	otal	Proportion	95%-CI
g = nonvalidated instru Beltr an-Corbellin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Tostmann 2020 Boudjema 2020 Moein 2020 Just 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects model Heterogeneity: $I^2 = 96\%, \tau$	25 22 40 60 31 37 41 7 50 7 94 134 22 1 1	79 45 59 68 60 171 27 368 159 34 882 0 < 0.01	- 0.489 0.678 0.632 0.456 0.456 0.064 0.117 0.292 0.259 0.255 0.843 0.647	$\begin{matrix} [0.216; 0.431] \\ [0.337; 0.642] \\ [0.544; 0.794] \\ [0.526; 0.728] \\ [0.335; 0.581] \\ [0.355; 0.584] \\ [0.047; 0.086] \\ [0.245; 0.367] \\ [0.225; 0.367] \\ [0.212; 0.303] \\ [0.212; 0.303] \\ [0.777; 0.896] \\ [0.465; 0.803] \\ [0.262; 0.555] \end{matrix}$
g = validated instrumer Hornuss 2020 Moein 2020 Sayin 2020 Random effects model Heterogeneity: <i>1</i> ² = 96%, τ ²	18 59 41	45	0.983 0.641	[0.257; 0.557] [0.911; 1.000] [0.511; 0.757] [0.301; 0.971]
Random effects model Heterogeneity: $I^2 = 97\%$, τ^2 Residual heterogeneity: I^2	ε ² = 1.8717, μ	051 0 < 0.01 0.01 0.2 0.4 0	0.472	[0.310; 0.640]
Cturdur.				
Study	Events 1	Fotal	Proportion	95%-CI
g = nonvalidated instru Beltr an-Corbelin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Tostmann 2020 Boudjema 2020 Moein 2020 Fontanet 2020 Just 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects model Heterogeneity: / ² = 98%, r	Jments 36 33 170 104 170 183 2785 2 60 481 285 7565 5 419 1 12 ² = 2.3223, p	40 45 203 122 189 190 2824 60 490 307 7650 20 466 2606	0.900 0.733 0.837 0.852 0.899 0.963 0.986 0.986 0.986 0.988 0.928 0.928 0.928 0.928 0.9250 0.899	95%-Cl [0.763; 0.972] [0.581; 0.854] [0.777; 0.910] [0.847; 0.938] [0.926; 0.985] [0.981; 0.990] [0.940; 1.000] [0.940; 1.000] [0.965; 0.992] [0.894; 0.955] [0.986; 0.991] [0.868; 0.925] [0.860; 0.969]
g = nonvalidated instru Beltr an-Corbelin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Tostmann 2020 Boudjema 2020 Moein 2020 Fontanet 2020 Just 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects model	Jiments 36 33 170 104 170 183 2785 2 60 481 285 7565 5 419 12 2 2 2 2 2 419 12 2 2 2 2 3 2 419 12 4 5 5 4 19 12 4 5 5 5 4 19 10 4 5 5 5 5 5 5 5 5 5 5 5 5 5	40 45 203 122 189 190 2824 60 490 307 7650 20 466 2606 6< 40 20 466 2606 6< 45 60 64 169	0.900 0.733 0.837 0.852 0.989 0.963 0.986 0.982 0.982 0.982 0.989 0.250 0.989 0.250 0.989 0.250 0.989 0.250 0.989 0.250 0.989 0.251 0.989	[0.763; 0.972] [0.581; 0.854] [0.779; 0.885] [0.777; 0.910] [0.847; 0.938] [0.926; 0.985] [0.981; 0.990] [0.940; 1.000] [0.940; 1.000] [0.894; 0.955] [0.884; 0.955] [0.986; 0.991] [0.887; 0.491] [0.868; 0.925]

Supplementary Fig. 2. Forest plots of the sensitivity (A), specificity (B).

(Continued to the next page)

Study	Events	Total	Pr	oportion	95%-CI
g = nonvalidated instr Beltr an-Corbellin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Tostmann 2020 Boudjema 2020 Moein 2020 Jost 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects mode Heterogeneity: $I^2 = 99\%$,	36 33 170 104 170 183 2785 60 481 285 7565 5 419	90 56 189 207 225 3382 113 602 305 7839 30 - 431 13608 , p < 0.01	*	0.589 0.899 0.748 0.821 0.813 0.823 0.531 0.799 0.934 0.965 0.167 0.972	$\begin{matrix} [0.298; 0.509] \\ [0.450; 0.719] \\ [0.847; 0.938] \\ [0.668; 0.818] \\ [0.762; 0.862] \\ [0.756; 0.862] \\ [0.810; 0.836] \\ [0.435; 0.625] \\ [0.765; 0.830] \\ [0.901; 0.959] \\ [0.961; 0.969] \\ [0.952; 0.986] \\ [0.645; 0.891] \end{matrix}$
g = validated instrume Hornuss 2020 Moein 2020 Sayin 2020 Random effects mode Heterogeneity: $l^2 = 94\%$,	45 49 51	72 50 74 196 , p < 0.01		0.980 0.689	[0.503; 0.736] [0.894; 0.999] [0.571; 0.792] [0.487; 0.962]
Random effects mode		13804		0.801	[0.670; 0.888]
Heterogeneity: I ² = 99%, Residual heterogeneity: I ²			0.2 0.4 0.6 0.8		C
Study	Events	Total	Pro	oportion	95%-CI
Study g = nonvalidated instr Beltr an-Corbellin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Boudjema 2020 Moein 2020 Fontanet 2020 Just 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects model Heterogeneity: $I^2 = 93\%$,	ruments 25 22 40 60 31 37 41 7 50 7 94 134 22	29 34 73 50 44 80 7 59 29 179 149 69 880		0.862 0.647 0.548 0.769 0.620 0.841 0.512 1.000 0.847 0.241 0.525 0.899 0.319	95%-C1 [0.683; 0.961] [0.465; 0.803] [0.427; 0.665] [0.670; 0.753] [0.472; 0.753] [0.699; 0.934] [0.398; 0.626] [0.590; 1.000] [0.730; 0.928] [0.103; 0.435] [0.443; 0.600] [0.439; 0.640] [0.439; 0.943] [0.212; 0.442] [0.547; 0.797]
g = nonvalidated instr Beltr an-Corbellin 2020 Hornuss 2020 Yan 2020 Zayet 2020 Benezit 2020 Tostmann 2020 Boudjema 2020 Moein 2020 Fontanet 2020 Just 2020 Dixon 2020 Joffily 2020 Haehner 2020 Random effects mode	$\begin{array}{c} \text{cuments} \\ 25 \\ 22 \\ 40 \\ 60 \\ 31 \\ 37 \\ 41 \\ 7 \\ 50 \\ 7 \\ 94 \\ 134 \\ 22 \\ 134 \\ 22 \\ 134 \\ 22 \\ 134 \\ 22 \\ 134 \\ 22 \\ 134 \\ 23 \\ 134 \\ 24 \\ 134 \\ 22 \\ 134 \\ 24 \\ 134 \\ 25 \\ 25 \\ 134 \\ 25 \\ 25 \\ 134 \\ 25 \\ 25 \\ 134 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 2$	29 34 73 78 50 44 80 7 59 29 - 179 149 69 880 , <i>p</i> < 0.01 18 70 54		0.862 0.647 0.548 0.769 0.620 0.841 0.512 1.000 0.847 0.241 0.525 0.899 0.319 0.685	$\begin{matrix} [0.683; 0.961] \\ [0.465; 0.803] \\ [0.427; 0.665] \\ [0.660; 0.857] \\ [0.472; 0.753] \\ [0.699; 0.934] \\ [0.398; 0.626] \\ [0.590; 1.000] \\ [0.730; 0.928] \\ [0.103; 0.435] \\ [0.449; 0.600] \\ [0.839; 0.943] \\ [0.212; 0.442] \end{matrix}$

Supplementary Fig. 2. (Continued) Negative predictive values (C), and positive predictive values (D) of the only olfactory disorder studies. Cl, confidence interval.