
Clinical and Experimental Otorhinolaryngology

Study name	200000000000000000000000000000000000000		Statistics f		-		means an				
	Std diff in means	Standard error	Variance	Lower	Upper limit	Z-Value	p-Value				
Series et al. (1992)	-0.500	0.237	0.056	-0.965	-0.035	-2.107	0.035	-			
Verse et al. (2002)	-0.105	0.197	0.039	-0.490	0.281	-0.533	0.594		100	_	
Kimet al. (2004)	-0.693	0.243	0.059	-1.169	-0.217	-2.852	0.004	-	-	- 1	
Nakata et al. (2005)	-0.418	0.301	0.091	-1.008	0.172	-1.388	0.165		_		
Virldcula et al. (2006)	0.073	0.158	0.025	-0.237	0.383	0.461	0.645			_	
Nakata et al. (2008)	-0.094	0.143	0.020	-0.375	0.186	-0.659	0.510		2		
Koutsourelakis et al. (2008)	0.000	0.192	0.037	-0.377	0.377	0.000	1.000		9	-	
Li et al. (2008)	0.023	0.140	0.020	-0.252	0.297	0.161	0.872			-	
Li et al. (2009)	0.036	0.151	0.023	-0.259	0.332	0.240	0.811			-	
Tosun et al. (2009)	-0.102	0.193	0.037	-0.480	0.276	-0.527	0.598		-		
Choi et al. (2011)	-0.132	0.214	0.046	-0.552	0.288	-0.617	0.537		()	-	
Sufioglu et al. (2012)	-0.004	0.189	0.036	-0.375	0.366	-0.022	0.982				
Moxness et al. (2014)	-0.116	0.131	0.017	-0.372	0.140	-0.891	0.373		-		
Yalamanchali et al. (2014)	-0.191	0.135	0.018	-0.456	0.073	-1.419	0.156		-	-	
Park et al. (2014)	-0.904	0.237	0.056	-1.369	-0.439	-3.808	0.000	-	—		
Shuaib et al. (2015)	-0.494	0.208	0.043	-0.901	-0.087	-2.379	0.017	-		-	
Xiao et al. (2016)	-0.318	0.187	0.035	-0.684	0.049	-1.698	0.090		_	-	
Uz et al. (2017)	-0.138	0.214	0.046	-0.558	0.282	-0.643	0.520		-	-	
Tagaya et al. (2017)	-0.169	0.159	0.025	-0.481	0.143	-1.060	0.289		-	=-	
Mandour et al. (2018)	-1.015	0.130	0.017	-1.270	-0.761	-7.825	0.000	-	•		
Nourizadeh et al. (2019)	-0.143	0.260	0.067	-0.652	0.365	-0.553	0.581		-	-	
W ata et al. (2020)	-0.211	0.154	0.024	-0.514	0.091	-1.372	0.170			-	
Kmet al. (2021)	-0.473	0.186	0.035	-0.838	-0.107	-2.535	0.011	1.0		-1	
	-0.252	0.067	0.004	-0.383	-0.121	-3.782	0.000			•	

After Surgery

Before Surgery

	Study name	Statistics for each study								Std diff in means and 95% CI					
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value							
	Nakata et al. (2005)	0.665	0.319	0.102	0.040	1.290	2.084	0.037	1	Ĩ	1		_		
	Nakata et al. (2008)	0.265	0.145	0.021	-0.020	0.550	1.824	0.068				•			
	Li et al. (2008)	0.098	0.140	0.020	-0.177	0.373	0.700	0.484				_			
	Li et al. (2009)	0.077	0.151	0.023	-0.219	0.373	0.509	0.610		- 1 -					
Lowest O ₂	Tosun et al. (2009)	0.252	0.262	0.069	-0.262	0.766	0.961	0.337		_					
	Choi et al. (2011)	-0.104	0.214	0.046	-0.523	0.315	-0.485	0.627				-			
saturation	Yalamanchali et al. (2014)	-0.012	0.134	0.018	-0.274	0.250	-0.090	0.928		-		e l			
	Xiao et al. (2016)	0.231	0.185	0.034	-0.131	0.594	1.250	0.211			· ·				
	Uz et al. (2017)	0.400	0.222	0.049	-0.035	0.834	1.804	0.071	- 15		1	-	-0		
	Tagaya et al. (2017)	0.388	0.164	0.027	0.067	0.710	2.368	0.018			-				
	Mandour et al. (2018)	0.699	0.118	0.014	0.469	0.930	5.947	0.000	- 1		- 1	-	-1		
	Nourizadeh et al. (2019)	0.141	0.259	0.067	-0.368	0.649	0.542	0.588		_					
	lw ata et al. (2020)	0.361	0.157	0.025	0.053	0.670	2.294	0.022		- 1	-				
	Kimet al. (2021)	0.264	0.180	0.032	-0.089	0.616	1.466	0.143				-			
		0.261	0.068	0.005	0.128	0.393	3.851	0.000							
									-1.00	-0.50	0.00	0.50	1.00		
										After Surgery	В	efore Surgery	:		

Supplementary Fig. 1. Forest plot for Epworth Sleepiness Scale (ESS), apnea-hypopnea index (AHI), and lowest O₂ saturation. After nasal surgery, ESS and AHI decreased significantly, and the lowest O₂ saturation increased significantly. Std diff, standardized difference; CI, confidence interval.