Tongue reduction operation improves mandibular prognathism in Beckwith-Wiedemann syndrome without compromising tongue function such as articulation and taste perception.

Do Won Kim, MD; Jeong Kyou Kim, MD; Gene Huh, MD; Doh Young Lee, MD, PhD; Seong-Keun Kwon, MD, PhD

1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea;
2Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University, Seoul, Korea.

Corresponding author
Seong Keun Kwon, M.D., Ph.D.
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101, Dachak-ro, Jongno-gu, Seoul, 03080, The Republic of Korea
Tel: +82-2-2072-2286; fax: +82-2-745-2387
E-mail: kwon.seongkeun@gmail.com

Running title: Tongue reduction in Beckwith-Wiedemann syndrome

Conflicts of interest: none to declare

Financial disclosure: Authors have nothing to disclose
HIGHLIGHT

✓ Macroglossia is a frequent symptom in Beckwith-Wiedemann syndrome patients, but it doesn’t always require tongue reduction surgery.

✓ Tongue position was much better in all patients who got tongue reduction surgery with “Keyhole technique, compared to preoperative condition.

✓ There was no severe complication of tongue reduction surgery. Speech evaluation and cephalometric analysis revealed that tongue reduction surgery results in functional and morphological improvement.

✓ Proper tongue reduction surgery is an effective and safe technique in the severe form of macroglossia in Beckwith–Wiedemann syndrome, and is an effective method to improve mandibular prognathism due to macroglossia.
ABSTRACT

Objectives: This study evaluated the surgical outcomes of patients with Beckwith-Wiedemann syndrome who underwent tongue-reduction surgery, and aimed to analyze whether malocclusion and mandibular prognathism caused by macroglossia could be improved.

Methods: A retrospective medical record review was performed for 11 patients with Beckwith-Wiedemann syndrome whose macroglossia was surgically treated. Demographic data, symptoms and signs, and intra- and postoperative surgical outcomes were evaluated. Surgery was performed by a single surgeon using a keyhole technique known as midline elliptical excision and anterior wedge resection. Preoperative and postoperative plain skull lateral X-rays were evaluated for prognathism improvement.

Results: Median age at the time of surgery was 35.1 months, and the ratio of males to females was 4:7. Median surgical time was 98 ± 31.45 minutes, and the median duration of postoperative ICU care was 3.81 ± 2.4 days. There were no airway complications. Two patients (18.2%) had postoperative wound dehiscence, however, there was no nerve damage, recurrence, or other complications. Among the five patients who underwent postoperative speech evaluation, all showed normal speech development, except one patient who had brain dysfunction and developmental delay. Measurement of A point – Nasion – B point angles and Sella – Nasion – B point angles (Point A is the most concave point of anterior maxilla; point B is the most concave point on mandibular symphysis) in plain X-rays showed a significant decrease in postoperative SNB angles ($P < 0.001$) and a significant increase in ANB angles ($P < 0.011$).

Conclusion: Tongue-reduction surgery is an effective and safe technique for severe forms of macroglossia associated with Beckwith-Wiedemann syndrome. In addition, it improves mandibular prognathism in young BWS patients with macroglossia.

Keywords: Beckwith-Wiedemann syndrome, macroglossia, prognathism
INTRODUCTION

Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder discovered by J. Bruce Beckwith in the United States in 1963 and H.R. Widemann in Germany in 1964 [1,2]. BWS has a spectrum of clinical symptoms and signs that can vary from mild to severe. Because mild cases tend to go unnoticed by patients’ caregivers and medical staff, the incidence of BWS is underestimated. However, it is currently believed to occur every 0.07 per 1000 births [3,4]. BWS is a genetically heterogeneous disorder that is not fully understood. In 75–80% of cases, chromosomal changes in the imprinted 11p15.5 region have been identified, with approximately 15% of cases being familial while 85% are sporadic [5]. Autosomal dominant transmission of BWS has been reported, including uniparental paternal disomy (UPD) of chromosome 11p15.5, and altered expression of the imprinted gene insulin-like growth factor 2 (IGF2) from the normally repressed maternal allele [6].

Clinical symptoms of BWS include neonatal hypoglycemia, macroglossia, visceromegaly, hemihypertrophy, omphalocele, and inguinal hernia. In the head and neck, BWS can manifest as a distinctive ear shape and a high risk for childhood neoplasms. Macroglossia is a term used to describe a large tongue that protrudes beyond the teeth or alveolar ridge while in a resting position. It can lead to airway and feeding difficulties, problems with speech, persistent drooling, and cosmetic concerns. In addition, it can cause malocclusion due to the abnormal position of tongue, misalignment of the dental arch, and jaw malformation. Malocclusion can make speech difficult and cause the mouth to hang open. For these reasons, tongue-reduction surgery is indicated for BWS patients with symptomatic macroglossia.

Various surgical techniques for tongue reduction have been utilized. In cases with mild macroglossia, conservative therapy is recommended, which includes orofacial regulation therapy using oral stimulation plates and speech therapy [7]. There are various tongue reduction techniques that have been conducted in craniofacial centers, each with distinct incision patterns and methods, including keyhole, stellate, anterior wedge, and modified W-shaped patterns. For example, Ainz et al. reported that patients receiving the anterior “W” tongue reduction technique had low rates of perioperative complications and showed significant improvements in oral competence [8].

In this study, we performed a retrospective review of midline elliptical excision and anterior wedge resection performed in BWS patients with macroglossia to evaluate surgical outcomes and complications. In addition, we evaluated whether malocclusion and mandibular prognathism caused by macroglossia could be surgically
improved.
MATERIALS AND METHODS

Study design and ethical consideration

A retrospective review of the medical charts of 68 patients diagnosed with BWS from June 2000 to February 2022 was performed. Among those, 15 patients who underwent tongue-reduction surgery were analyzed. Four patients who underwent surgery at other hospitals or departments were excluded; 11 patients were finally included in this study. We identified two genetically mutated subtypes: one (9.1%) patient had chromosome 11p15.5 ICR1 hypermethylation, and the other nine patients (90.9%) had 11p15.5 ICR2 hypomethylation. Demographic data, perioperative data (including operation time, duration of ICU stay, and postoperative complications), diet, speech evaluation, improvements in symptoms, and the need for revision surgery were all analyzed.

A retrospective review of electronic medical records was conducted for each patient after obtaining approval from the Institutional Review Board (IRB No.2207-028-1337). The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). Individual consent for this retrospective analysis was waived.

The informed consent for the publication of the photograph of pre- and postoperative status of prognathism was obtained separately.

Tongue-reduction surgery: keyhole technique (Fig. 1)

Tongue-reduction surgery was performed using a keyhole technique known as midline elliptical excision and anterior wedge resection. The operation was performed on BWS patients with macroglossia who had concerns about trauma to the tongue, cosmetic concerns due to tongue protrusion, speech problems, persistent drooling, difficulty eating, dentoskeletal problems, airway obstruction, and failure to thrive. The goal of surgical treatment is to restore the size and shape of the tongue while preserving its functionality, including taste and sensory function, swallowing, and articulation; and to correct and prevent dentoskeletal problems such as mandibular prognathism caused by tongue protrusion.

Surgery started with the patient in the supine position and nasotracheally intubated. We began by mobilizing the tongue to evaluate its size, and three stay sutures were placed at the midline, right and left anterolateral aspects of the tongue; then the keyhole was drawn on its dorsal and inferior surfaces. The width of the anterior wedge was chosen to correct for the degree of tongue protrusion (Fig. 1A, B). Using the cut mode on a Bovie needle, the
mucosal edge and approximately 1 cm of submucosal tissue were incised. We used a Harmonic scalpel (Ethicon Endo Surgery, Cincinnati, OH) to cut through the bulk of the muscle, and to reduce bleeding while protecting the lateral neurovascular bundles (Fig. 1C, D). Upon removal of the specimen, hemostasis was performed, and closure was started. Closure was performed with 3–0 and 4–0 VICRYL interrupted sutures (Fig. 1E). Multiple rows of sutures were placed through the bulk of the musculature. Then we used 4–0 VICRYL sutures in a simple interrupted fashion to evert the mucosal edges of the tongue. Routine postoperative pediatric intensive care was performed with the patient intubated and under sedation to reduce postoperative pain and prevent wound dehiscence.

Cephalometric Analysis

In the six patients who underwent pre- and postoperative lateral skull X-rays, the Sella-Nasion-A point (SNA) angle, Sella-Nasion-B point (SNB) angle, A point-nasion-B point (ANB) angle, Sella-Nasion-Pogonion (SNPg) angle, angle between Sella-Nasion and Gonion-Gnathion (SN/GoGn) and angle between Gonion-Gnathion and Anterior nasal spine-Posterior nasal spine (GoGn/ANS-PNS) were evaluated to assess improvements in mandibular prognathism (Fig. 2) [9]. Non-parametric unpaired t-tests were used to compare pre- and postoperative differences. Variables are presented as mean ± standard deviation (SD) and statistical analyses were performed using the Statistical Product and Service Solutions, version 20.0 (IBM Corp., Armonk, NY, USA); P values < 0.05 were considered statistically significant.
RESULTS

Among 68 patients diagnosed with BWS from June 2000 to February 2022, 15 patients underwent tongue-reduction surgery. Of these, three patients underwent surgery at other hospitals, and one patient had surgery in a different department; these patients were excluded due to insufficient medical data. Finally, 11 patients treated between December 2017 and February 2022 were analyzed.

There were 4 male and 7 female patients with a median age of 35.09 months (12–96 months). Average follow-up duration was 7.44 ± 11.64 months. All patients had significant tongue protrusion with dentoskeletal problems, and three patients (27.3%) had persistent drooling. One patient (9.1%) had difficulty eating and swallowing. No patients had airway problems, lingual nerve disfunction, or failure to thrive (Table 1). Mean surgical time was 98 ± 31.45 minutes, and the mean duration of postoperative ICU care was 3.81 ± 2.4 days.

Hypoglossal palsy or tongue atrophy were not observed in any patients after surgery. Decreased taste could not be evaluated because the patients were too young, but through parental feedback we did not find any sign that taste was decreased. Postoperative subjective analysis by the main surgeon revealed that all patients had better tongue positioning in the oral cavity (Fig. 3).

Two patients (18.2%) had postoperative wound dehiscence, which was managed and resolved with conservative treatment. One patient with wound dehiscence underwent revision surgery (Table 2). Four patients (36.4%) started their diet on postoperative day 1 via a Levine tube. Mean oral diet initiation day was 6.0 ± 2.0 days except one patient who had been kept gastrostomy tube due to brain dysfunction. Among five patients who underwent postoperative speech evaluation, all patients showed normal speech development except one patient who had brain dysfunction and delayed development.

According to the postoperative cephalometric analysis, SNB angles significantly decreased (preoperative 80.86° vs. postoperative 76.27°, \(P < 0.001 \)) and ANB angles significantly increased (preoperative 5.6° vs. postoperative 8.71°, \(P < 0.011 \)) (Fig. 4). However, there was no significant difference in SNA angle, SNPg angle, SN/GoGn angle, and GoGn/ANS-PNS angle.
DISCUSSION

Our results show that in BWS patients, performing tongue-reduction surgery effectively ameliorates problems that arise due to enlargement of the tongue. Tongue-reduction surgery in young patients also improves cosmetic outcomes. In addition, our cephalometric analysis showed improvements in objective positioning of the mandible. Although minor complications such as wound dehiscence can occur, there were no critical complications, such as lingual and hypoglossal neuropathy.

BWS is a disease with a wide variety of signs and symptoms. For this reason, it is known as a disease that requires a multi-dimensional team of experts. Mild BWS presents as macroglossia that can be managed with conservative treatment but surgical intervention is required if they have symptoms related with BWS.

The indications of tongue reduction in BWS patients are multiple. Early operation is necessary in selected patients, such as patients who have difficulties in breathing or feeding which can lead to failure to thrive. It may also be indicated if the size of the tongue causes drooling, speech or articulation disorders, abnormal cosmetic appearance with tongue protrusion and impression of cognitive delay. And large tongue can cause unfavorable mandibular growth. There is no absolute contraindication of tongue reduction surgery specifically [10,11].

In this study, all BWS patients presented with macroglossia accompanied by tongue protrusion. Feeding problems, including difficulty swallowing, were observed in one patient, and drooling was observed in two patients. In the remaining eight patients, there were no physical complications, however, surgery was performed to solve cosmetic concerns and malocclusion due to tongue protrusion.

Postoperatively, two patients suffered from wound dehiscence, and one required revision surgery. Within 4 days, these two patients began an oral diet immediately without the use of a nasogastric feeding tube. The remaining eight patients except one patient who had a gastrostomy tube started feeding using a nasogastric tube, and an oral diet began after a period after 5–6 days. To address immediate postoperative complications such as irritability due to postoperative pain and wound dehiscence, all patients stayed in the ICU under deep sedation for the first few days.

No acute airway obstruction due to macroglossia was observed in our patient population, therefore no perioperative tracheostomies were performed. However, in several previous studies on macroglossia, patients had compromised airways at birth, at rest in relation to positioning, or during feeding. In addition, one study reported cases of severe airway obstruction that required preoperative tracheostomy [12].
According to previous studies, the visual appearance of speech was improved following tongue-reduction surgery, as the tongue was no longer visible during articulation. In addition, functional oral motor skills were improved, and distinct articulatory errors were eliminated. This finding suggests that good speech results can be obtained following tongue-reduction surgery. In another study, most of the children had normal speech patterns at their post-surgical follow-up [13]. In our study, five patients with pre- and postoperative speech evaluations showed normal speech development after surgery, except one patient with developmental delay.

The best age for surgery to prevent or correct prognathism due to macroglossia is controversial. According to a retrospective review on surgical tongue reduction in BWS patients conducted by Alonso-Rodreguez et al. between 2000 and 2015, tongue regrowth can cause recurrence of prognathism when surgery is performed too young, which can lead to revision surgery; this may be due to relatively high levels of IGF2 [14]. The authors concluded that surgery should be delayed until a minimum age of 6 months. In our study, although there were no significant differences in speech outcomes according to the patients’ age at the time of surgery, mandibular prognathism showed greater improvements in younger patients. However, because our sample size is small, the longest cephalometric follow-up period is one year, and we could not check longitudinal follow-up of each patient, this may not be generalizable to other patients with BWS. In addition, we believe that an osteotomy is not necessary for the correction of prognathism in younger patients. However, in a previous paper by Köle et al., tongue-reduction surgery combined with mandibular osteotomy was performed in children 7 to 12 years of age for the management of mandibular prognathism [15]. And according to a paper by Meazzini et al., they suggested that mandibular growth rate does not decrease in the long term in operated BWS patients compared to non-operated BWS patients. According to their data, despite early glossectomy, the mandible continues to grow in height and in length with a similar growth curve in both operated and non-operated BWS patients [16]. But their results also include small sample size, and other papers had demonstrated that tongue reduction, when done prior to 2 years of age, is efficacious at preventing the development and/or worsening of dentoskeletal malocclusion. So, we need to further longitudinal evaluation for that point, and will reflect in the future study.

We believe that before skeletal bony growth is completed and the correction of mandibular prognathism becomes difficult due to the loss of flexibility, tongue-reduction surgery alone can effectively correct prognathism.

Surgical approaches for managing BWS were first reported in the 17th century [17]. Since then, several techniques that can reduce tongue size have been utilized, including anterior wedge reduction, tip amputation,
central reduction, marginal resection, and dorsal flap excision. Combinations of these can be tailored to specific patients. In this study, we chose midline elliptical excision and anterior wedge resection, also known as the keyhole technique, to correct the aforementioned shape and dysfunctionality of the enlarged tongue. There is no consensus of the surgical extent of the tongue reduction. But there are some important considerations that we should pay attention to during the operations to correct the tongue to an ideal size. To avoid aggravating the hypoglossal nerve bundle and artery located in the ventral inferolateral region of the tongue, the midline of the dorsal tongue was elliptically cut, and damage to the glossopharyngeal nerve was minimized by wedge resection of the anterior circumvallate papillae. With these considerations, the operator should carefully correct the tongue size to achieve normal volume and shape [18].

The keyhole technique can effectively reduce the tongue size in all dimensions, including the length, thickness, and width of the tongue compared to other techniques, and it has been reported that speech function can be improved after the surgery because it rarely affects the mobility of the tongue [10].

In addition to keyhole technique, there are several different techniques of tongue reduction surgery and those have advantages and complications. Marginal resection can reduce the tongue width and length, but difficult to reduce the thickness. It can make the tongue ankylosed and globular with limited mobility and it may lead to speech alteration, paresthesia and taste alteration [19]. Anterior wedge reduction and tongue tip amputation can reduce the tongue length, but has a poor impact on the width. Perception of taste can be altered after surgery and this technique can lead to a shortened and ankylosed tongue with limited protraction [15,20]. Central reduction can reduce the thickness of the tongue. Central reduction technique consists of ellipsoid excision technique and W-shaped posterior excision technique. These different techniques have yielded good results with minimal complications but may be insufficient for true macroglossia [21,22]. But, macroglossia varies with each patient, therefore it is necessary to tailor surgery according to each patient’s unique circumstances.

Patients in this study were too young to evaluate postoperative taste sensation. However, the parents of the patients reported that although the anterior part of the tongue (which senses sweetness) was mostly removed during the operation, the patients’ ability to taste sweetness was not affected. A previous study reported that although no patients completely lost taste sensation, their ability to detect salty and bitter tastes declined after surgery [23]. However, the number of studies on postoperative taste function in BWS patients is lacking, and further research is needed. Despite the positive outcomes of tongue-reduction surgery, macroglossia varies with each patient, therefore it is necessary to tailor surgery according to each patient’s unique circumstances.
In conclusion, symptomatic macroglossia requiring surgical tongue reduction is relatively rare, therefore, this surgery is not commonly performed in patients with BWS. When indicated, tongue-reduction surgery must be tailored to the unique needs of BWS patients, and the keyhole technique can successfully narrow and shorten the tongue. In our study, we showed that tongue-reduction surgery is a simple, effective, and safe technique for treating severe macroglossia while preserving the functional part of the tongue in BWS patients. In addition, an advantage of the keyhole technique is that it does not completely remove the tip of the tongue, and therefore it does not affect the sensation and positioning required for normal speech. Above all, we found that tongue-reduction surgery is an effective method to improve mandibular prognathism caused by macroglossia in young BWS patients.
REFERENCES

Figure Legends

Figure 1. Tongue-reduction surgical procedure
Clinical images of a representative case. (A) Keyhole technique operative markings on the dorsal surface of the tongue. (B) Keyhole technique operative markings on the inferior surface of the tongue. (C) Intraoperative resection of the tongue. (D) Resected area and direction of sutures (yellow arrows). (E) Immediate postoperative result.

Figure 2. Cephalometric parameters
The SNB angle measures the anterior limit of the mandibular basal arch in relation to the anterior cranial base; The ANB angle measures the anteroposterior relationship of the mandible to the maxilla; The SNPg angle measures the mandibular prominence; The SN/GoGn angle measures the craniomandibular angle; GoGn/ANS-PNS angle measures the intermaxillary angle; Point A is the most concave point of anterior maxilla; point B is the most concave point on mandibular symphysis.

Figure 3. Pre- and postoperative external photo of two patients who underwent tongue-reduction surgery
Subjective analysis revealed that tongue protrusion was significantly improved postoperatively.

Figure 4. Cephalometric analysis
Cephalometric analysis revealed that prognathism was improved postoperatively. SNB angles were significantly decreased (A) and ANB angles were significantly increased (B).
The results of SNA angle, SNPg angle, SN/GoGn angle, and GoGn/ANS-PNS angle were not significant, so they were not included in the figure.
Table 1. Demographic and clinical data

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age at operation (months)</th>
<th>Body weight (kg)</th>
<th>Tongue protrusion</th>
<th>Feeding problem</th>
<th>Persistent drooling</th>
<th>Dentsoskeletal problem</th>
<th>Airway obstruction</th>
<th>Failure to thrive</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>F</td>
<td>68</td>
<td>29.2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#2</td>
<td>M</td>
<td>34</td>
<td>16.1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#3</td>
<td>F</td>
<td>27</td>
<td>15.7</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#4</td>
<td>F</td>
<td>34</td>
<td>16.9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#5</td>
<td>M</td>
<td>49</td>
<td>19</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#6</td>
<td>F</td>
<td>12</td>
<td>10.8</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#7</td>
<td>F</td>
<td>13</td>
<td>9.1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#8</td>
<td>M</td>
<td>96</td>
<td>45.9</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#9</td>
<td>F</td>
<td>13</td>
<td>11.3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#10</td>
<td>M</td>
<td>14</td>
<td>13.2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#11</td>
<td>F</td>
<td>26</td>
<td>14.5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Perioperative data

<table>
<thead>
<tr>
<th>Case</th>
<th>Operation time (min)</th>
<th>ICU stay (days)</th>
<th>Post-op complications</th>
<th>Revision surgery</th>
<th>Start of L-tube feeding (days postoperative)</th>
<th>Start of oral diet (days postoperative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>174</td>
<td>1</td>
<td>+*</td>
<td>-</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>#2</td>
<td>82</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>#3</td>
<td>60</td>
<td>3</td>
<td>+*</td>
<td>+</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>#4</td>
<td>90</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>#5</td>
<td>84</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>#6</td>
<td>97</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>#7</td>
<td>73</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>#8</td>
<td>121</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>#9</td>
<td>76</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>#10</td>
<td>95</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>#11</td>
<td>100</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Wound dehiscence
NA, not applicable
Figure 2

Cephalometric Landmarks

S = Sellion
ANS = Anterior nasal spine
PNS = Posterior nasal spine
N = Nasion
A = Subspinal point
B = Supramental point
Pg = Pogonion
Go = Gonion
Gn = Gnathion
Figure 3

Case 1

Case 2

Preoperative

Postoperative
Figure 4

A

SNB

Estimation Plot

Mean of differences

Preop Postop

B

ANB

Estimation Plot

Mean of differences

Preop Postop

<table>
<thead>
<tr>
<th>Operation age (month)</th>
<th>F/U date with X ray (month)</th>
<th>Value of SNB change (degree)</th>
<th>Value of ANB change (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>13</td>
<td>-5.55</td>
<td>+5.69</td>
</tr>
<tr>
<td>#2</td>
<td>96</td>
<td>-3.43</td>
<td>+0.52</td>
</tr>
<tr>
<td>#3</td>
<td>13</td>
<td>-5.54</td>
<td>+1.35</td>
</tr>
<tr>
<td>#4</td>
<td>14</td>
<td>-3.54</td>
<td>+4.81</td>
</tr>
<tr>
<td>#5</td>
<td>12</td>
<td>-4.89</td>
<td>+3.16</td>
</tr>
<tr>
<td>#6</td>
<td>26</td>
<td>-1.51</td>
<td>+3.20</td>
</tr>
</tbody>
</table>

Case 1

Case 2

Preop

Postop

Preop

Postop